
System Issues in Boundary-Scan Board Test
Kenneth P. Parker

Manufacturing Test Division
Agilent Technologies

Loveland Colorado, USA
Kenneth_Parker@Agilent.com

Abstract
Boards have evolved into complex systems and

even collections of interacting systems. Test
engineers struggle to find out how these systems are
initialized and booted because of poor
documentation. While Boundary-Scan (IEEE Std
1149.1) [IEEE93, Park98] is a powerful test tool,
test engineers are finding out that yesterday's DFT
rules and test approaches may actually be
detrimental to successfully testing systems on a
board. One culprit is the boot up process of the
board and even individual ICs. What can be done to
address this?

Introduction
Boundary-Scan is a powerful test tool for

complex printed circuit boards and systems,
particularly as traditional In-Circuit access through
a bed-of-nails becomes increasingly difficult. Today
it is not unusual to find a single board with over
500 components (50% digital) and 10,000 nodes
with only 2000 (20%) or less actually accessible to
In-Circuit probing.

Such boards are extremely difficult to test
without a limited access test technology such as
Boundary-Scan [IEEE93]. Boundary-Scan adds not
only controllability and observability [Will83] but
also makes possible the automation of test
development and pinpoint diagnostics [Park98].
These benefits are completely lacking in the
fallback technology of old, functional testing.

For many years, test engineers have been taught
to observe certain testing rules that are absolutely
necessary to create rock-solid, repeatable, reliable
tests. These rules need to be re-examined now that
boards, even individual ICs, may be considered
complex system in their own right. Indeed, a board
today may consist of many interacting systems.

These interactions can introduce new testing
problems that can be especially baffling for those
who are unprepared.

Features of Board Systems
Twenty years ago, boards were composed of

medium-scale integrated circuits and only worked
as a system with other boards. This meant that a
single board probably did not have enough logic on
it to constitute a system. The board often did not
have an oscillator either. Thus, the board did not
“boot up” but more likely responded to a master
reset signal. This reset signal was a natural target
for test engineers, because they knew that asserting
the reset would instantly bring the board into a
well-defined state.

But a few boards did have an oscillator and this
meant that after power was applied, the board was
probably trying to “do something”. In these cases,
test engineers were quick to develop the rule that as
well as asserting the master reset, they should also
“kill the clock” by disabling it. Disabling the clock
had three salutary effects. First, it prevented the
board (which was likely only a portion of a system)
from trying to do something that, due to the
incompleteness of the system, was impossible.
Second, it decreased the likelihood that the board
might stumble into an inconsistent state (where, for
example, a bus-fight might result) and third, it cut
down on electrical noise that might complicate
testing. Most systems of the past only had a single
oscillator.

Today and as far out as we can see, a board is
a complex system, or even a collection of
interacting systems. A board may contain hundreds
of ICs, some with 105 to 106 gates, and contain
multiple clock domains. Each domain could be a
system in its own right, with asynchronous
communication protocols between them. Even more

interesting is that fact that these “clocks” may be
hidden from the view of the test engineer because
they are buried within an IC. The board designer
may soon forget these “crypto-clock” domains are
there because they are not a part of the mission
function of the board, but part of the mission
infrastructure.

A perfect example of crypto-clock domain
infrastructure is illustrated by a hypothetical

1
 Field-

Programmable Gate Array (FPGA) paired with a
complementary serial PROM (SPROM) as shown
in Figure 1

Figure 1: FPGA/SPROM Configuration
Upon receiving an initialization signal (the

rising edge on Initialize), an FPGA may request a
download from an SPROM (the rising edge on
Download) which then communicates via a serial
protocol with the FPGA, under the control of an on-
chip clock buried in the SPROM (using the Write
and Data signals). This download of mission
functionality takes place in a few hundred
milliseconds after the request and then the FPGA
takes on its mission function. Indeed, the Initialize

1
 This example is simplified but representative of actual

devices.

signal may be tied to the positive voltage supply
such that the act of applying power to the board
triggers the FPGA configuration as part of the
power-up process. Again the board designer
probably never counts this activity as a new clock
domain. Worse, the test engineer, who cannot hope
to be an expert in all ICs

2
 that will pass his or her

eyes, may not be aware that the autonomous serial
protocol even exists.

Figure 2 shows a second common scenario,
where a microprocessor has the capability of
programming an FPGA directly. This is an
attractive design because it allows a circuit to be
dynamically reconfigured under the control of
software.

Figure 2: An FPGA directly programmed by a
microprocessor, allowing dynamic reconfiguration.

Some Testing Problems of Systems
What does the particular problem just described

have to do with Boundary-Scan testing? Perhaps
not too much if the serial download never interferes
with the operation of Boundary-Scan. Sadly, it may
well have serious consequences when it does. There
are at least two scenarios known where trouble
results. In one scenario, Boundary-Scan in the
FPGA simply doesn’t work while the serial
download is operating. In another, the FGPA is
incapable of communicating with its neighbors
before or during the download because the device
has pin parameters (like VIH and VOL) that are
determined by the download. Thus, if the board

2
 Particularly when some of the ICs contain programmable

logic that is undocumented.

FPGA
SPROM

Download

Initialize

Write

Data

Initialize

Valid Valid Valid
Data

Download

Write

Unprogrammed Being Programmed
Programmed and Operational

FPGA
uProc

Download

Initialize

Write

Data

Memory

Data

does not successfully program such devices by
itself, then Boundary-Scan will not operate
correctly until they are programmed. The board test
engineer may not be (at first) aware of this
requirement and it may be a difficult requirement to
satisfy if proper consideration is not taken.

If a board is a system, then we must view its
test as a system test problem. We must be
particularly wary of that critical time from the point
of power application

1
 to when the board becomes

“operational”. This is where many test problems are
born.

An Example
A board being tested was a collection of four

obvious systems, each containing a microprocessor.
Each microprocessor had a nearby FPGA it could
dynamically load with programming. In addition,
there were a dozen additional FPGAs that loaded
their programming from nearby SPROMs. An
example of the problem with autonomous FPGA
programming is illustrated in Figure 3.

Figure 3: A sequence of events where a Boundary-
Scan test is invalidated because it causes an FPGA to
become non-compliant during testing.

1
 We simplify this problem here by assuming only one power

supply where several may exist, that could be turned on in
sequence.

This board powers up and then downloads
programming bits into its FPGAs. Some of these
FPGAs are triggered by power up directly, by
sensing a rising edge on the power supply rails.
Others are triggered by signals ultimately derived
from the microprocessors. When testing begins,
“foreign” signal activities occur which can trigger a
programming initiation pulse on an FPGA. This
causes the FPGA to begin its autonomous
programming sequence, except now the test
prevents it from completing, since the system has
been “lobotomized” [Park98] by Boundary-Scan,
that is, it no longer can respond as the designer
intended for program downloading. Unfortunately,
these FPGAs are not compliant during the
download process. In this real case, certain FPGAs
became non-compliant during Boundary-Scan
testing, ruining the integrity of the Boundary-Scan
infrastructure and leading to nonsensical failure
diagnostics. In this case, the only way to recover the
proper operation of the board was to cycle the
power.

This board was especially troublesome since at
the time of test initiation, it was not clear if all the
FPGAs were in a compliant state. It is also difficult
to determine if the test itself would cause any
FPGAs to suddenly begin a programming sequence.

A board designer may be forgiven for not

Initialize

Valid Valid Valid
Data

Download

Write

FPGA Compliant FPGA Non-Compliant FPGA Compliant FPGA Non-Compliant

Power Up Board Bootup Test Execution

Test-Induced Glitch

FPGA Programming
Sequence Restarted

having a “failing” mindset. His/her job is hard
enough just trying to fathom the correct operation
of the design without considering all the way it
might not work. Thus, the natural inclination of
designers is to overlook the issue of what might
happen during the power-up sequence that could
frustrate its success.

However, the test engineer must consider how a
board powers up, and what could go wrong with
that process. The next sections discuss old and new
ways of looking at this problem.

Some Previous DFT Rules
In the past, test engineers wanted to control a

board from the very beginning, as soon as power
was applied. So, two rules have resulted: 1) Assert
any reset you can find; and 2) kill any oscillators
you can find, preferably with the ability to insert a
tester controlled clock signal

1
 at will. These two

rules guaranteed that a board would, at power up,
be quiescent and very likely in a consistent state
(i.e., with no drivers in conflicting states). From
there it could (usually) be safely and repeatably In-
Circuit tested.

In boards common today, there may not be an
easily identified reset, and there may be several
(even many) clock domains. Further, one may not
find all the clock domains simply by looking at the
bill-of-materials for oscillator devices because of
crypto-clock domains created by buried oscillators.
Finally, since many boards now contain config-
urable logic devices, the configuration of the board
may not be established until significant time has
passed after power up, provided nothing interferes
with the configuration process.

New DFT Considerations
Today’s test engineer is faced with new

considerations. Should master resets be asserted
during power up? Should master oscillators be shut
down? The answer seems to be “maybe”. It is very
helpful to have the board designer available to
discuss these questions, but that is often an unob-
tainable luxury. Thus we need new DFT rules

1
 This tester-controlled clock usually had a much lower clock

frequency and would only be injected during the testing of
certain devices that needed it.

which can be used to frame this discussion early in
the design.

There seems to be two approaches to powering
up for test. One, the old approach, is to disable all
clocks and assert all resets continuously as power
up occurs. We call this an “unbooted board”. The
other, newer approach is to allow the board to boot
itself up after power application by waiting for
some interval of time beyond power stabilization for
the intelligent actors (microprocessors executing
PROM boot code, FPGAs conducting autonomous
downloads, etc.) to complete their boot processes.
This is called a “booted board”. If testing a board
depends on it being successfully booted before a
test technology such as Boundary-Scan will work,
then we have new considerations. Here are some
questions regarding the testability of a board:

1. Does the unbooted board have a working
configuration, or does it depend on the boot
process

2
 to establish the ability for ICs to

logically communicate?

2. How sensitive is a booted board’s boot process
to disruption? For example, would a commonly
expected failure prevent the board from booting
up successfully? This is akin to judging the
fraction of possible failures that can prevent
boot up and asking if the risk is acceptable.

3. If boot up is critical to success, how can we tell
if we have achieved it? This may prevent a lot
of “untestable” boards ending up in a bone pile.

4. If boot up is critical to success, which nodes
should not be probed with In-Circuit nails
because of loading effects that can prevent the
boot process from operating correctly? For
example, nails on system clocks should be
avoided to ensure the quality of these critical
signals.

5. Are there processes on the board that, once
triggered, prevent testing activities from
working? The autonomous FPGA download is
an example of this problem.

6. If such a process can be triggered, how can we
avoid it? If triggered, will it complete? How can

2
 Here we mean a full boot up, or enough boot up to assure

that testing mechanisms are successfully enabled.

we tell if it completed? If it won’t complete,
what mechanism

1
 may be used to reset it?

Discussing these questions can quickly lead to
design and test practices (rules) that can avoid
many problems during volume production. These
problems will usually lead to poor yield at board
test and bad boards that are very difficult to
diagnose, so there is a big payoff in heading them
off.

Conclusion
Modern boards, now collections of systems,

some of which are easily spotted, and others which
are hidden (called crypto-clock domains) present
new problems for test engineers and the teams that
design them. It is especially useful to form a test
strategy early in the design that decides whether a
board must be unbooted or booted before testing
activities begin.

1
 As noted in the example, some FPGAs refuse to perform

Boundary-Scan while being programmed, and this process
may never complete if the expected serial process is
disrupted. Indeed the only way to recover may be to cycle
power on the FPGA.

REFERENCES

 [IEEE93] “IEEE Standard Test Access Port and Boundary-
Scan Architecture”, IEEE Standard 1149.1a-1993,
IEEE Standards Board, 345 East 47th St. New
York, NY 10017, 1993

[Park98] K. P. Parker, “The Boundary-Scan Handbook, 2nd

Edition, Analog and Digital”, Kluwer Academic
Publishers, Norwell MA, 1998

[Will83] T. W. Williams and K. P. Parker, “Design for
Testability – A Survey”, Proceedings of the
IEEE, vol. 71, No. 1, Jan 1983

